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Abstract—The monolithic integration of tunneling diodes (TDs)
with other semiconductor devices such as high electron-mobility
transistors (HEMTs) or HBTs, creates novel quantum functional
nonlinear devices and circuits with unique properties: the negative
differential resistance and the extremely low dc power consump-
tion. In this paper, we present a family of InP-HEMT-TD-based
voltage-controlled oscillators operating in the 4–6-GHz band
suitable for wireless applications, along with an effective analyt-
ical treatment of the stability issues. Prototypes having different
circuit topologies of HEMT-TD devices have been designed and
fabricated. The circuits generated an output power in the range
of 11 to 18 dBm when operated at a bias current of 1.75 mA
at 500 mV. Phase noise characteristics and tuning capability of
the circuit configuration have been experimentally determined.
The maximum tuning range of 150 MHz and the maximum single
sideband-to-carrier ratio of 97 dBc Hz at 200 kHz have been
achieved.

Index Terms—Microwave voltage-controlled oscillator (VC),
monolithic microwave integrated circuit (IC), quantum-well
device.

I. INTRODUCTION

T HE increasing demand for smaller, faster, and low-power
consumption systems has created a remarkable opportu-

nity for innovative semiconductor devices, integrated circuits
(ICs), and wireless systems. One of the new technologies
capable of to meeting such requirement is based on the incor-
poration of quantum devices (QDs) in the circuits [1]. QDs
like tunneling diodes (TDs) have demonstrated the potential
for highest speed–lowest power consumption operation. Sev-
eral microwave circuits using QDs have been demonstrated:
bidirectional amplifier [2], mixer [3], [4], frequency multiplier
[5], and oscillator [6]. A fundamental building block that
has received high consideration since the earliest microwave
system development is the sinewave oscillator. Solid-state
three-terminal device-based oscillators were not optimized and
tunnel diode oscillators represented a good choice. However,
these circuits are not quite suitable for wireless products
due to their high power consumption and large physical
size. On the contrary, low-power consumption monolithic

Manuscript received April 5,2002; revised August 26, 2002.
A. Cidronali, G. Collodi, M. Camprini, and G. Manes are with the Department

of Electronics and Telecommunications, University of Florence, Firenze 50139,
Italy (e-mail: acidronali@ing.unifi.it).

V. Nair, J. Lewis, and H. Goronkin are with the Physical Sciences Research
Laboratory, Motorola Laboratories, Tempe AZ 85284 USA.

Digital Object Identifier 10.1109/TMTT.2002.805288

voltage-controlled oscillators (VCOs) are required for portable
communication products. A second very important issue is
that the phase noise characteristic of free-running oscillators
based on tunnel devices reported up to now are slightly worse
than those reported with conventional technology. Systematic
theoretical investigation of phase noise mechanism of negative
differential resistance (NDR) devices and experimental data on
tunnel diode VCOs incorporating a phase-locked loop (PLL)
system are not yet available. Significant research effort in this
field is expected in the coming years. This paper introduces
the relevant issues related to the design of VCOs by the use
of three-terminal NDR-devices for low-power applications
along with an experimental demonstration of the technology
capability. It is demonstrated that the unique features of such
class of devices enable the realization of signal sources with
the lowest bias voltage and dc power consumption with a
reasonable high efficiency and with a fairly good level of phase
noise. Due to excellent maximum operative frequencies as
previously reported, the three-terminal NDR device appears as
a suitable alternative to conventional implementation of ultra
low power signal source.

This paper is organized as follows. The description of the
quantum microwave monolithic integrated circuit (QMMIC)
technology, which is the basis of the developments presented
here, is given in Section II. In Section III, an effective analytical
treatment concerning the mechanism generating instability
and undesired or spurious oscillations on the basis of a
simple equivalent circuit model is discussed. The guidelines
for the proper use of such devices in microwave oscillators
and other negative resistance circuits are also given. Finally,
in Section IV, the microwave performance of two different
topologies of ultralow-power VCOs is reported. The VCOs
consisted of an InP heterojunction interband tunneling diode
(HITD) monolithically integrated with an HEMT forming the
heterojunction interband FET (HITFET). In particular, the two
VCO prototypes were implemented by using the same HITFET
in common-drain and in common-source configurations. The
experimental results are compared with respect to the tuning
capability, the output power, and the phase noise.

II. QMMIC T ECHNOLOGY

There are many types of tunnel diodes such as interband ho-
mojunction type diodes, interband heterojunction tunnel diodes
[7] or intraband resonant tunneling diodes [8]. They have been
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TABLE I
HITFET LAYER STRUCTURE

realized in many different material systems. The basic device
characteristics of all of them, however, are similar. HITDs allow
the highest peak–valley current ratio and an excellent cut-off
frequency and HFET on lattice-matched structure on InP offers
high-frequency operation at low voltages.

The semiconductor layer structure of the HITD and HEMT
which give rise to the QMMIC technology adopted here is
shown in Table I. It is grown by the MBE technique and
wafers are selectively etched to obtain the two devices. They
can be realized in an integrated version, realizing the HITD
directly on the drain contact of the HEMT obtaining a vertical
monolithically integrated transistor like the one in [6]–[9].
Although in principle the HITD can be placed directly on either
the gate or the source electrodes, these solutions give a difficult
control of theI-V characteristic, making them not suitable for
practical circuit applications and will not be considered further.

The solution adopted in this work consists of interconnecting
the two devices, i.e., the HITD and the HEMT, as it is con-
ventionally made for two or more elements of the same circuit.
The result is a novel NDR device having three terminals called
HITFET. The third terminal is used as gate control [6]. The inte-
gration of the HITD in series to the drain electrode realizes the
drain-HITFET. Without any further specification, in this paper
the HITFET’s drain voltage is defined as the voltage applied to
the anode of the HITD, while its cathode is connected to the
drain of the HFET.

The HEMTs used in this study operated at an of about
200 mA/mm at V. They achieved cut-off frequen-
cies in the range of 70 GHz. The HITDs have shown very high
current densities (50-60 KAcm ) and peak-to-valley ratios be-
tween 10 and 15 [7]. Analysis of microwave performance shows
a maximum frequency of oscillation to be around 60 GHz for
a 2.5 2.5 m diode. Since the HITFET operates as a three-
terminal voltage-controlled NDR, the maximum operative fre-
quency is not related to the power gain but to the NDR cut-off.
The devices used in the design of the prototype circuits exhib-
ited a maximum frequency of about 30 GHz at the bias point of

mV and V.
The current–voltage characteristics of a drain-HITFET is

shown in Fig. 1. The bias voltage spans from 0 to 1 V while
the gate control voltage spans from 0 to0.8 V (at steps of
100 mV). The shift of the NDR region toward higher drain bias
voltage is observed as the gate bias magnitude is increased.
For gate voltages close to 0 V, an increase in the magnitude
of the NDR region is also observed. This results in a cut-off
frequency decrease as the gate bias changes from 0 V to a

Fig. 1. I–V characteristic of the HITFET.V = 0 to�8 V in steps of 100 mV.

Fig. 2. Drain-HITFET’s reflection coefficient as seen from the source terminal
for the common-drain (square) and from the drain for the common-source
(triangle) configuration at 6. 2 GHz,V =500 mV, as a function of the gate
control voltages.

pinch-off voltage due to the increase in drain-source resistance
of the HEMT that is in series with the HITD. The HEMT also
introduces reactive components that modify the self-resonant
frequency slightly. At the gate bias voltage of V,
the characteristic becomes strongly discontinuous and the NDR
vanishes completely. The increasing value of the drain-source
resistance associated with the HEMT device, which is in series
with the HITD, moves the onset of the HITFET NDR region
to a higher drain voltage. The overall effect is a reduction
of the peak–valley voltage range. As the NDR voltage range
decreases, the negative differential resistance approaches zero
and the HITFET is no longer functional.

In Fig. 2, the dependence of reflection coefficientof
the drain-HITFET as seen from the source terminal, i.e., in
common-drain configuration, and from the drain terminal, i.e.,
in common-source configuration, is plotted as a function of the
gate control voltages. The measuredis greater than 1 due
to the NDR associated with the diode. The two configurations
exhibit a slight difference in the magnitude of roughly 1 dB,
and this is due to the effect of the HEMT capacitance between
the gate and source which is responsible for a signal leakage
that is more effective in the common-drain configuration. In
fact, it is possible to tailor the size of the HITD or, equivalently,
to increase the peak current by increasing the doping profile
in order to reduce the NDR magnitude. A higher value of
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Fig. 3. Common-source HITFET-based VCO circuit schematic.

could be achieved at the expense of an increased parasitic
junction capacitance and reduced cut-off frequency. A proper
choice of the NDR is necessary to meet the requirement of
high-frequency operation and a high value that provides
enough margins to satisfy the oscillation condition. The phase
swing of depends mainly on the variation in the drain-source
to channel capacitance. The effect due to the HITD junction
capacitor is minimal since it is an order of magnitude lower.

III. A NALYTICAL TREATMENT OF THEHITFET STABILITY

The HITFET-based VCOs are implemented by introducing
a lumped element resonator in the two possible configurations:
common-source (CS) or common-drain (CD). The schematics
of the two configurations are shown in Figs. 3 and 4, respec-
tively. In both, the topologies the HITFET is tuned by an ex-
ternal control voltage , while a simpleLC resonator fixes
the oscillation frequency.

The insertion of external impedance in series to a tunnel diode
faces a number of problems in terms of low frequency and short
circuit stability [10], [11], which are discussed below with the
help of a simple but effective analytical treatment. For this pur-
pose, the drain-HITFET represented in Fig. 5(a) is modeled as
shown in Fig. 5(b). The model has been derived under the as-
sumption that the HEMT within the HITFET, as the effect of
the series connection with the HITD, is biased at a drain-source
voltage of a few tens of millivolts; this makes the transconduc-
tance negligible with respect to the HEMT output conductance.
The drain-gate and gate-source capacitances are also neglected
because they are in series with a 1-Kgate resistance. The
HITDs used in the circuit had an area of 2.52.5 m and the
HEMT had two gate fingers of 25-m unit width. The oper-
ating bias voltages were V and V for the
gate and the drain of the HITFET, respectively, and the corre-

Fig. 4. Common-drain HITFTET-based VCO circuit schematic.

(a) (b)

Fig. 5. (a) Schematic representation of the HITFET. (b) Equivalent circuit
model adopted for the analytical treatment of the stability.

sponding drain current was 1.7 mA. The complete model pa-
rameters are , nH, ,

pF, , and pF. In the Laplace
domain, the voltage-Kirchoff law of the circuit in Fig. 5(b) is

. The HITFET is short-circuit stable if
the impedance has no zeros in the right half of the
plane. After mathematic manipulation, the impedance can be
expressed as

(1)

where . It turns out that
the stability condition can now be imposed on which can
be written in the form

(2)
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The polynomial coefficients are evaluated by the inherent
time-constants and the self-resonance frequencies of the devices
as follows:

(3)

where

(4)

From the analysis of (2), it is possible to write the necessary and
sufficient conditions for the HITFET short-circuit asymptotical
stability as

(5)

Once the equivalent circuit parameters are evaluated, (5) deter-
mines whether the stability of a particular device is critical or
not. The conditions in (5) are also useful if we want to investi-
gate the stability issues with respect to variations of the equiva-
lent circuit parameters or when a particular network is added to
the circuit. Four cases are worth investigating.

A. Effect of Series Inductor

In circuits of practical interest, it is significant to assess the
influence of a series choke inductor that is normally required to
bias the device. It can be easily taken into account by substi-
tuting with in the above treatment, where
is the additional series inductor. In a state-of-the-art InGaAs-
InAlAs HITFET, the capacitors and have very close
values; moreover, for a well-designed device has to be much
higher than and , therefore the following further condi-
tions are usually fulfilled:

(6)

In the hypothesis that the HITFET itself (i.e., with )
is short-circuit stable, only the second condition of (5) can be
changed by the presence of an additional series inductor. The
critical value of is given by that equation: if is further in-
creased, the circuit becomes unstable and the frequency of os-
cillation decreases for increasing values of. The calculation,
comprising a load termination of 50, leads to a critical value
of nH. The output spectrums obtained through tran-
sient CAD simulations with different values of are reported
in Fig. 6. The simulations make use of previously developed
nonlinear models of the HITD and HEMT [3]–[7]. The addi-
tional series inductor values were, respectively, 1, 1.3, 1.5,
and 1.8 nH. The absence of a significant spectral content in the

Fig. 6. Simulated output spectrum forL =1 and 1.3 nH (stable) andL = 1.5
and 1.8 nH (unstable).

Fig. 7. Example of low-frequency unstable VCO output spectrum.

case nH demonstrates the accuracy of the analysis, since
in this case the inductor value is lower than the critical value.

Fig. 7 reports the typical spectrum that arises from a low-
frequency unstable HITFET if a resonator at the frequency of
6 GHz is connected to the device with the objective to obtain
a single-tone generation: the intermodulation and the frequency
shift of the main spectral content are the results of a described
effect.

B. Effect of a Series Resistor

This case represents the practical situation of an uncer-
tain ohmic loss evaluation or the presence of a resistive load ter-
mination. Equivalently to the previous case, is replaced
with , where represents the additional
resistance in the network. If the first condition of (6) is verified,
the insertion of the series resistance increases bothand

while decreasing . The circuit is then stable until
becomes negative; this occurs when ;
for the devices under consideration, this value is 167. This
condition leads to a growing exponential functions solution for
a time-domain device current, which is a kind of instability like
the one discussed in [10] and [11]. Fig. 8 shows the transient
simulation of the output signal with a series resistance of
180 . The waveform is the periodic repetition of a growing
exponential limited by the extent of the NDR region. The
fundamental frequency is 133 MHz and its spectrum content is
broadly spread over a large frequency range. In conclusion, if
the resistive termination is not designed in accordance with the
discussed guidelines, the resulting VCO can show this behavior
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Fig. 8. Simulated output waveform and spectrum with a series resistor of
180
.

superimposed to the sinusoidal oscillation, and the overall
effect is a strong degradation of the phase noise performance.
In addition, the NDR region is decreased with the insertion of
a series resistor ; eventually it completely vanishes with an
increasing value of . This limits the maximum value of .
It can also be demonstrated that, if both a series resistance
and series inductor are introduced, the circuit is more stable
for higher values of than when only the inductance was
present, but when the circuit becomes unstable the oscillation
frequency is not affected by the resistance

C. Effect of a Parallel Capacitance With the HITD

This case represents the incorrect evaluation of the diode
junction capacitance. Adding a parasitic contribution, we
obtain . In this case, the stability is critical only
for very low values of , therefore if the HITFET itself is
stable (i.e., the conditions of (5) are verified for ), it
can be demonstrated that stability conditions are not changed
by . The most relevant effect associated with this case is a
reduction of the diode negative resistance cut-off frequency.

D. Effect of a Parallel Capacitance With the HEMT

As in the previous case, this case considers an incorrect esti-
mation of the drain-source capacitance; moreover, it gives also
a guideline for the correct choice of the HEMT size. Intro-
ducing and supposing that the condition

is always true, it is possible to identify three
different situations on the basis of the value of. Defining
and as the zeros of , we obtain the fol-
lowing situations.

1) : the circuit is stable only if
there are real zeros for and

.
2) : the circuit is

stable only if , being .
3) : the circuit is always stable.

IV. HITFET-BASED VCO: EXPERIMENTAL RESULTS

Three prototypes of HITFET-based VCOs have been de-
signed in accordance with the guidelines discussed above. The
prototype “A” is implemented in the common-drain configu-
ration and the prototypes “B” and “C” in the common-source

Fig. 9. Chip photograph of the common-source HITFET-based VCO,
prototype “A.”

configuration. The photo of the prototype “A” fabricated chip is
shown in Fig. 9. The overall chip size is around 450550 m .

The design method adopted is the well-known technique
commonly used for reflection oscillators. The HITFET is
considered to be the negative resistance element, which must
resonate with a proper load to obtain the oscillation. To achieve
this, the reflection coefficient ( ) of the LC resonator and
reflection coefficient ( ) of the HITFET must obey the
equation

(7)

All the prototypes are biased at 500 mV through the HITD’s
anode while the tuning potential is applied to the HEMT’s
gate through a 1-K resistor. The current drawn by the circuit
at the drain for a bias voltage of 500 mV and for a control
voltage in the range from 0.5 to 0.5 V is in the range of 1.7
to 1.85 mA, with a corresponding dc power consumption of
about 850 W. This value, to the best of our knowledge, is the
lowest dc power consumption for a MMIC VCO operating in
this frequency range. This feature enables applications in the
area of RF-TAG for ID or distributed remote sensor networks
where the low power consumption and the low data rate are
common required features. Moreover, the extremely low-power
supply makes this technology interesting for battery-less
solar cell powered equipments. The tuning characteristic of
the free-running VCO prototype “A” is shown in Fig. 10 for
a wide range of tuning voltage. A frequency swing in the
6.1–6.2-GHz range with a nearly constant power level has
been observed. The graph shows a range between0.4 and

0.1 V in which the frequency changes sharply. This is due
to the combined effects of the parabolic shape in the phase of
the reflection coefficient and the presence of the lumpedLC
resonator. For a higher level of tuning voltage, the reflection
coefficient has a linear behavior in magnitude and phase, and
this produces a linear frequency swing, as shown in Fig. 10.
The resulting tuning range is 150 MHz. The power output is
about 16 dBm, which leads to an efficiency of around 3%.
For this calculation, the losses of the measurement test-set
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Fig. 10. Common-drain VCO (CD-VCO). Tuning characteristic prototype
“A” working at 6.18 GHz.

Fig. 11. Output spectrum of the prototype “A”: SSCR is�105 dBc/Hz at 5
MHz.

were deembedded. A relatively constant value of the output
power is a direct consequence of theI–V characteristic of the
HITFET. The effect of the tuning on the bias drain current
is small, limited to few tens of microamperes. The power
level and consequently the efficiency could be improved by
choosing a larger ac-coupling capacitor . This option may
make (7) more stringent and could reduce the tuning range.
The phase noise performance of the oscillator was estimated
from spectrum analyzer measurements (see Fig. 11). At 5-MHz
offset from the center frequency, a single-sideband-to-carrier
ratio (SSCR) of 105 dBc Hz was obtained. A study at system
level has shown that, for microwave data links which adopt a
GFSK modulation with a and a modulation index of
0.3, the measured phase noise enables a bit error rate (BER) of
10 , assuming a carrier-to-noise ratio at the receiver input of
24 dB. The phase noise can be improved if the VCO is inserted
in a PLL system.

Prototype “B” operates at 6.37 GHz with a much more re-
duced tuning range, on the order of 2 MHz, and similar output
power with respect to prototype “A.” The tuning characteristic
is shown in Fig. 12. The reduced tuning range may be explained
by observing the topology of the two VCOs. The tuning control
in the CD- and CS-VCO is obtained mainly by the interaction
between the HEMT source-to-gate capacitance and theLC res-
onator. In the CD-VCO, this interaction is much more effective

Fig. 12. Common-source VCO (CS-VCO). Tuning characteristic prototype
“B” working at 6.37 GHz.

Fig. 13. Output spectrum of the prototype “B”: the SSCR is�97 dBc/Hz at
230 kHz.

than in the CS-VCO since theLC resonator inserted directly in
the gate–source network. However, this has an important draw-
back: the increase of the phase noise. In fact, the output signal
modulates the gate–source capacitance and in turn modifies the
instantaneous oscillation frequency. The adoption of a CS-VCO
allows decoupling the output signal from the control voltage
to obtain a better phase noise as experimentally demonstrated
by the output spectrum reported in Fig. 13. At 230-kHz offset
from the center frequency, an SSCR of97 dBc Hz was ob-
tained. Prototype “C: has anLC resonator with a higher value
of inductance than prototypes “B,” making the operative fre-
quency lower, namely, 4.62 GHz.The remaining part of the cir-
cuit is the same. The performance in terms of tuning range and
output power is similar to that of prototype “B” (see Fig. 14).
The main difference consists of higher output power of about

11 dBm, which gives an efficiency of 9.3%. This latter param-
eter is supposed to be related to the lower operative frequency
and to the lack of a design optimization for all the prototypes.
Also, in this case, the improved phase noise figure is confirmed
by the output spectrum measurement reported in Fig. 15. At a
center frequency of 4.6255 GHz, it exhibits an output level of

10.5 dBm and produces an SSCR of97 dBc Hz at an offset
frequency of 200 kHz. At this point, a comparison with the prior
art and different technologies can be conveniently made. Fig. 16
sketches the comparison of the VCO performances presented in
this work with the ones reported in literature for both Si and
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Fig. 14. Common-source VCO. Tuning characteristic prototype “C” working
at 4.62 GHz.

Fig. 15. Output spectrum of the prototype “C”: the SSCR is�98 dBc/Hz at
200 kHz.

Fig. 16. FOM computed on recently reported VCOs implemented in Si and
III-V technologies.

III-V semiconductor technologies. The figure of merit (FOM)
adopted for the comparison is the widely used

FOM (8)

The VCOs presented in this work rank in a very high posi-
tion although the designs have been optimized neither for phase
noise nor for output power. The circuits take advantage of the

extremely low power supply and satisfactory phase noise. The
circuit in [24] adopted a sophisticated synchronization scheme
while the one in [25] employed SiGe BiCMOS technology and
a PLL at 6 GHz to obtain an out-band phase noise value of

110 dBm Hz at 1 MHz. The VCO in [22] used an original
configuration derived from the class-E amplifier and was opti-
mized for low-power supply applications. All the VCOs consid-
ered for this comparison operated with dc power consumption
at least ten times higher than the prototypes presented in this
work.

V. CONCLUSION

A MMIC InP-HEMT\HITD-based VCO circuits operating
in the 4–6-GHz bands has been presented. An effective anal-
ysis treatment to determine low-frequency stability conditions
and range of useful operations of drain-HITFET VCOs are dis-
cussed. Three prototypes implemented in common-source and
common-drain configurations have been fabricated and tested.
The two 6-GHz VCOs demonstrated an output power ranging
from 15 to 18 dBm with SSCRs of 105 dBc Hz at an offset
frequency of 5 MHz and 97 dBc Hz at an offset frequency of
230 kHz for the common–drain and the common-source con-
figurations, respectively. The 4-GHz VCO exhibited an output
power of 11 dBm and an SSCR of98 dBc Hz at 200 KHz
away from the center frequency. The VCOs exhibited very good
phase noise characteristics and tuning capability. The unique
feature of the circuits is the ability to operate at very low supply
voltage. The dc power consumption of the circuits was only
about 850 W. This feature makes the prototypes suitable for
RF-TAG as well as for an ID beacon or as a signal source for
data links for remote sensor networks where the low-power con-
sumption and extremely low voltages are essential requisites.
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